English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ab initio study of the structural response to magnetic disorder and van der Waals interactions in FeSe

MPS-Authors
/persons/resource/persons213507

Lochner,  Felix
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Institut für Theoretische Physic III, Ruhr-Universität Bochum, D-44801 Bochum, Germany;

/persons/resource/persons125180

Hickel,  Tilmann
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lochner, F., Eremin, I. M., Hickel, T., & Neugebauer, J. (2021). Ab initio study of the structural response to magnetic disorder and van der Waals interactions in FeSe. Physical Review B, 103(5): 054506. doi:10.1103/PhysRevB.103.054506.


Cite as: http://hdl.handle.net/21.11116/0000-0008-4B2D-3
Abstract
The electronic structure in unconventional superconductors holds a key to understanding the momentum-dependent pairing interactions and the resulting superconducting gap function. In superconducting Fe-based chalcogenides, there have been controversial results regarding the importance of the kz dependence of the electronic dispersion, the gap structure, and the pairing mechanisms. Here, we use density functional theory to investigate the underlying structural properties in combination with a sophisticated real-space treatment of magnetic disorder for the prototype system FeSe. Our calculations demonstrate that interlayer and intralayer interactions need to be considered and that charge-driven van der Waals interactions between Se atoms instead of magnetic coupling effects drive the interlayer binding. The methodological advances and physical insights are important for upcoming investigations of the three-dimensional effects, including nontrivial topology, of FeSe1-xTex and FeSe1-xSx systems. © 2021 American Physical Society.