Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Nanopatterned materials for receptor crosstalk in cell adhesion

MPG-Autoren
/persons/resource/persons173872

Wei,  Q.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons217907

Posa,  F.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons75354

Cavalcanti-Adam,  E. A.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wei, Q., Posa, F., & Cavalcanti-Adam, E. A. (2021). Nanopatterned materials for receptor crosstalk in cell adhesion. Talk presented at Nanobiotechnology for Cell Interfaces. 733. WE-Heraeus-Seminar. Online. 2021-03-17 - 2021-03-18.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-4BD1-8
Zusammenfassung
The crosstalk between different receptor types at the interface with the extracellular
environment is crucial for cell adhesion, migration and differentiation. Nanopatterned
surfaces which combine adhesive ligands and growth factors allow to study how local
changes in the extracellular environment regulate cell responses through specific
receptor-ligand interactions.
For adhesion to the extracellular matrix, integrin lateral clustering strongly influences
cell adhesion dynamics and forces [1]. The nanoscale presentation of integrin ligands
combined with growth factors, namely BMP-2 and BMP-6, modulates not only the
specific interaction with different integrin types [3], but also the osteogenic
differentiation of cells [4, 5]. Such nanopatterning approaches can be also applied to hydrogels of varying stiffness to elucidate the interdependency of mechanotransduction and differentiation signaling [6].