Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Label-free optical detection of single enzyme-reactant reactions and associated conformational changes

MPG-Autoren
/persons/resource/persons216287

Kim,  Eugene       
Vollmer Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Baaske,  Martin D.
Vollmer Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Schuldes,  Isabel
Vollmer Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Wilsch,  Peter S.
Vollmer Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Vollmer,  Frank
Vollmer Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, E., Baaske, M. D., Schuldes, I., Wilsch, P. S., & Vollmer, F. (2017). Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. Science Advances, 3(3): e1603044. doi:10.1126/sciadv.1603044.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-4D1E-2
Zusammenfassung
Monitoring the kinetics and conformational dynamics of single enzymes is crucial to better understand their biological functions because these motions and structural dynamics are usually unsynchronized among the molecules. However, detecting the enzyme-reactant interactions and associated conformational changes of the enzyme on a single-molecule basis remains as a challenge to established optical techniques because of the commonly required labeling of the reactants or the enzyme itself. The labeling process is usually nontrivial, and the labels themselves might skew the physical properties of the enzyme. We demonstrate an optical, label-free method capable of observing enzymatic interactions and associated conformational changes on a single-molecule level. We monitor polymerase/DNA interactions via the strong near-field enhancement provided by plasmonic nanorods resonantly coupled to whispering gallery modes in microcavities. Specifically, we use two different recognition schemes: one in which the kinetics of polymerase/DNA interactions are probed in the vicinity of DNA-functionalized nanorods, and the other in which these interactions are probed via the magnitude of conformational changes in the polymerase molecules immobilized on nanorods. In both approaches, we find that low and high polymerase activities can be clearly discerned through their characteristic signal amplitude and signal length distributions. Furthermore, the thermodynamic study of the monitored interactions suggests the occurrence of DNA polymerization. This work constitutes a proof-of-concept study of enzymatic activities using plasmonically enhanced microcavities and establishes an alternative and label-free method capable of investigating structural changes in single molecules.