日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

How proteins open fusion pores: insights from molecular simulations

MPS-Authors
/persons/resource/persons32615

Risselada,  H. J.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15155

Grubmüller,  H.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

3310893.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Risselada, H. J., & Grubmüller, H. (2021). How proteins open fusion pores: insights from molecular simulations. European Biophysics Journal, 50(2), 279-293. doi:10.1007/s00249-020-01484-3.


引用: https://hdl.handle.net/21.11116/0000-0008-4DF4-F
要旨
Fusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.