Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Fallback Accretion Model for the Years-to-Decades X-ray Counterpart to GW170817

MPG-Autoren
/persons/resource/persons231068

Kiuchi,  Kenta
Computational Relativistic Astrophysics, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2104.04433.pdf
(Preprint), 322KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ishizaki, W., Ioka, K., & Kiuchi, K. (in preparation). Fallback Accretion Model for the Years-to-Decades X-ray Counterpart to GW170817.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-4EFB-7
Zusammenfassung
A new component was reported in the X-ray counterpart to the binary
neutron-star merger and gravitational wave event GW170817, exceeding the
afterglow emission from an off-axis structured jet. The afterglow emission from
the kilonova/macronova ejecta may explain the X-ray excess but exceeds the
radio observations if the spectrum is the same. We propose a fallback accretion
model that a part of ejecta from the neutron star merger falls back and forms a
disk around the central compact object. In the super-Eddington accretion phase,
the X-ray luminosity stays near the Eddington limit of a few solar masses and
the radio is weak, as observed. This will be followed by a power law decay with
index $-5/3$. The duration of the constant luminosity phase conveys the initial
fallback timescale $t_0$ in the past. The current multi-year duration requires
$t_0 > 3$--$30$ sec, suggesting that the disk wind rather than the dynamical
ejecta falls back after the jet launch. Future observations in the next decades
will probe the timescale of $t_0 \sim 10$--$10^4$ sec, around the time of
extended emission in short gamma-ray bursts. The fallback accretion has not
been halted by the {\it r}-process heating, implying that fission is weak on
the year scale. We predict that the X-ray counterpart will disappear in a few
decades due to the {\it r}-process halting.