Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Emergence of Bimodal Motility in Active Droplets

MPG-Autoren
/persons/resource/persons213855

Vajdi Hokmabad,  Babak
Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons240860

Dey,  Ranabir
Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons214019

Baldwin,  Kyle A.
Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173584

Maass,  Corinna C.
Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vajdi Hokmabad, B., Dey, R., Jalaal, M., Mohanty, D., Almukambetova, M., Baldwin, K. A., et al. (2021). Emergence of Bimodal Motility in Active Droplets. Physical Review X, 11: 011043. doi:10.1103/PhysRevX.11.011043.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-5419-E
Zusammenfassung
Artificial model swimmers offer a platform to explore the physical principles enabling biological
complexity, for example, multigait motility: a strategy employed by many biomicroswimmers to explore
and react to changes in their environment. Here, we report bimodal motility in autophoretic droplet
swimmers, driven by characteristic interfacial flow patterns for each propulsive mode. We demonstrate
a dynamical transition from quasiballistic to bimodal chaotic propulsion by controlling the viscosity
of the environment. To elucidate the physical mechanism of this transition, we simultaneously visualize
hydrodynamic and chemical fields and interpret these observations by quantitative comparison to
established advection-diffusion models. We show that, with increasing viscosity, higher hydrodynamic
modes become excitable and the droplet recurrently switches between two dominant modes due to
interactions with the self-generated chemical gradients. This type of self-interaction promotes self-avoiding
walks mimicking examples of efficient spatial exploration strategies observed in nature.