English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5

MPS-Authors

Yang,  Shuo-Ying
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260357

Wang,  Yaojia
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260868

Liu,  Defa
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons262317

Derunova,  Elena
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260360

Ali,  Mazhar N.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

eabb6003.full.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Yang, S.-Y., Wang, Y., Ortiz, B. R., Liu, D., Gayles, J., Derunova, E., et al. (2020). Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Science Advances, 6(31): eabb6003. doi:10.1126/sciadv.abb6003.


Cite as: https://hdl.handle.net/21.11116/0000-0008-D5CC-2
Abstract
The anomalous Hall effect (AHE) is one of the most fundamental phenomena in physics. In the highly conductive regime, ferromagnetic metals have been the focus of past research. Here, we report a giant extrinsic AHE in KV3Sb5, an exfoliable, highly conductive semimetal with Dirac quasiparticles and a vanadium Kagome net. Even without report of long range magnetic order, the anomalous Hall conductivity reaches 15,507 Ω-1 cm-1 with an anomalous Hall ratio of ≈ 1.8%; an order of magnitude larger than Fe. Defying theoretical expectations, KV3Sb5 shows enhanced skew scattering that scales quadratically, not linearly, with the longitudinal conductivity, possibly arising from the combination of highly conductive Dirac quasiparticles with a frustrated magnetic sublattice. This allows the possibility of reaching an anomalous Hall angle of 90° in metals. This observation raises fundamental questions about AHEs and opens new frontiers for AHE and spin Hall effect exploration, particularly in metallic frustrated magnets.