Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Glide-resolved photoemission spectroscopy: Measuring topological invariants in nonsymmorphic space groups

MPG-Autoren

Bernevig,  B. Andrei
Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Alexandradinata, A., Wang, Z., Bernevig, B. A., & Zaletel, M. (2020). Glide-resolved photoemission spectroscopy: Measuring topological invariants in nonsymmorphic space groups. Physical Review B, 101(23): 235166. doi:10.1103/PhysRevB.101.235166.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-A864-A
Zusammenfassung
The two classes of 3D, time-reversal-invariant insulators are known to subdivide into four classes in the presence of glide symmetry. Here, we extend this classification of insulators to include glide-symmetric Weyl metals and find a finer Z4⊕Z classification. We further elucidate the smoking-gun experimental signature of each class in the photoemission spectroscopy of surface states. Measuring the Z4 topological invariant by photoemission relies on identifying the glide representation of the initial Bloch state before photoexcitation—we show how this is accomplished with relativistic selection rules, combined with standard spectroscopic techniques to resolve both momentum and spin. Our method relies on a spin-momentum locking that is characteristic of all glide-symmetric solids (inclusive of insulators and metals in trivial and topological categories). As an orthogonal application, given a glide-symmetric solid with an ideally symmetric surface, we may utilize this spin-momentum locking to generate a source of fully spin-polarized photoelectrons, which have diverse applications in solid-state spectroscopy. Our ab initio calculations predict Ba2Pb, stressed Na3Bi, and KHgSb to realize all three, nontrivial insulating phases in the Z4 classification.