English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tunable magnetic antiskyrmion size and helical period from nanometers to micrometers in a D2d Heusler compound

MPS-Authors
/persons/resource/persons259901

Ma,  Tianping
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260833

Sharma,  Ankit K.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260835

Saha,  Rana
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260837

Srivastava,  Abhay K.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

Werner,  Peter
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (public)

adma.202002043.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ma, T., Sharma, A. K., Saha, R., Srivastava, A. K., Werner, P., Vir, P., et al. (2020). Tunable magnetic antiskyrmion size and helical period from nanometers to micrometers in a D2d Heusler compound. Advanced Materials, 32(28): 2002043. doi:10.1002/adma.202002043.


Cite as: http://hdl.handle.net/21.11116/0000-0008-7EC3-F
Abstract
Skyrmions and antiskyrmions are magnetic nano‐objects with distinct chiral, noncollinear spin textures that are found in various magnetic systems with crystal symmetries that give rise to specific Dzyaloshinskii–Moriya exchange vectors. These magnetic nano‐objects are associated with closely related helical spin textures that can form in the same material. The skyrmion size and the period of the helix are generally considered as being determined, in large part, by the ratio of the magnitude of the Heisenberg to that of the Dzyaloshinskii-Moriya exchange interaction. In this work, it is shown by real‐space magnetic imaging that the helix period λ and the size of the antiskyrmion daSk in the D2d compound Mn1.4PtSn can be systematically tuned by more than an order of magnitude from ≈100 nm to more than 1.1 µm by varying the thickness of the lamella in which they are observed. The chiral spin texture is verified to be preserved even up to micrometer‐thick layers. This extreme size tunability is shown to arise from long‐range magnetodipolar interactions, which typically play a much less important role for B20 skyrmions. This tunability in size makes antiskyrmions very attractive for technological applications.