English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Intrinsic stability of magnetic anti-skyrmions in the tetragonal inverse Heusler compound Mn1.4Pt0.9Pd0.1Sn

MPS-Authors
/persons/resource/persons260835

Saha,  Rana
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260837

Srivastava,  Abhay K.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons259901

Ma,  Tianping
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260283

Jena,  Jagannath
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

Werner,  Peter
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41467-019-13323-x.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Saha, R., Srivastava, A. K., Ma, T., Jena, J., Werner, P., Kumar, V., et al. (2019). Intrinsic stability of magnetic anti-skyrmions in the tetragonal inverse Heusler compound Mn1.4Pt0.9Pd0.1Sn. Nature Communications, 10: 5305. doi:10.1038/s41467-019-13323-x.


Cite as: https://hdl.handle.net/21.11116/0000-0008-DC8F-0
Abstract
Magnetic anti-skyrmions are one of several chiral spin textures that are of great current interest both for their topological characteristics and potential spintronic applications. Anti-skyrmions were recently observed in the inverse tetragonal Heusler material Mn1.4Pt0.9Pd0.1Sn. Here we show, using Lorentz transmission electron microscopy, that anti-skyrmions are found over a wide range of temperature and magnetic fields in wedged lamellae formed from single crystals of Mn1.4Pt0.9Pd0.1Sn for thicknesses ranging up to ~250 nm. The temperature-field stability window of the anti-skyrmions varies little with thickness. Using micromagnetic simulations we show that this intrinsic stability of anti-skyrmions can be accounted for by the symmetry of the crystal lattice which is imposed on that of the Dzyaloshinskii-Moriya exchange interaction. These distinctive behaviors of anti-skyrmions makes them particularly attractive for spintronic applications.