Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Current-induced magnetization switching by the high spin hall conductivity α-W

MPG-Autoren
/persons/resource/persons245678

Parkin,  Stuart S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1907.06192v1.pdf
(Verlagsversion), 972KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liao, W.-B., Chen, T.-Y., Ferrante, Y., Parkin, S. S. P., & Pai, C.-F. (2019). Current-induced magnetization switching by the high spin hall conductivity α-W. Physica Status Solidi RRL - Rapid Research Letters, 2019: 1900408. doi:10.1002/pssr.201900408.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-0CDD-2
Zusammenfassung
The spin Hall effect originating from 5d heavy transition-metal thin films such as Pt, Ta, and W is able to generate efficient spin–orbit torques that can switch adjacent magnetic layers. This mechanism can serve as an alternative to conventional spin-transfer torque for controlling next-generation magnetic memories. Among all 5d transition metals, W in its resistive amorphous phase typically shows the largest spin–orbit torque efficiency ≈0.20–0.50. In contrast, its conductive and crystalline α phase possesses a significantly smaller efficiency of ≈0.03 and no spin–orbit torque switching is realized using α-W thin films as the spin Hall source. Herein, through a comprehensive study of high-quality W/CoFeB/MgO and the reversed MgO/CoFeB/W magnetic heterostructures, it is shown that although amorphous-W has a greater spin–orbit torque efficiency, the spin Hall conductivity of α-W (|σSHα-W|=3.71×105 Ω-1 m-1) is ≈3.5 times larger than that of amorphous W (|σSHamorphous-W|=1.05×105 Ω-1 m-1). Moreover, spin–orbit torque-driven magnetization switching using a MgO/CoFeB/α-W heterostructure is demonstrated. The findings suggest that the conductive and high spin Hall conductivity α-W is a potential candidate for future low-power consumption spin–orbit torque memory applications.