English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Advantageous nearsightedness of many-body perturbation theory contrasted with Kohn-Sham density functional theory

MPS-Authors

Hodgson,  M. J. P.
Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wetherell, J., Hodgson, M. J. P., Talirz, L., & Godby, R. W. (2019). Advantageous nearsightedness of many-body perturbation theory contrasted with Kohn-Sham density functional theory. Physical Review B, 99(4): 045129. doi:10.1103/PhysRevB.99.045129.


Cite as: https://hdl.handle.net/21.11116/0000-0009-1236-6
Abstract
For properties of interacting electron systems, Kohn-Sham (KS) theory is often favored over many-body perturbation theory (MBPT), owing to its low computational cost. However, the exact KS potential can be challenging to approximate, for example in the presence of localized subsystems where the exact potential is known to exhibit pathological features such as spatial steps. By modeling two electrons, each localized in a distinct potential well, we illustrate that the step feature has no counterpart in MBPTs (including Hartree-Fock and GW) or hybrid methods involving Fock exchange because the spatial nonlocality of the self-energy renders such pathological behavior unnecessary. We present a quantitative illustration of the orbital-dependent nature of the nonlocal potential, and a numerical demonstration of Kohn's concept of the nearsightedness for self-energies, when two distant subsystems are combined, in contrast to the KS potential. These properties emphasize the value of self-energy-based approximations in developing future approaches within KS-like theories.