Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spin waves in disordered materials

MPG-Autoren

Thomas,  Stefan
Max Planck Institute of Microstructure Physics, Max Planck Society;

Zubizarreta,  Xabier
Max Planck Institute of Microstructure Physics, Max Planck Society;

Zakeri,  Khalil
Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260094

Ernst,  Arthur
Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Buczek, P., Thomas, S., Marmodoro, A., Buczek, N., Zubizarreta, X., Hoffmann, M., et al. (2018). Spin waves in disordered materials. Journal of Physics: Condensed Matter, 30(42): 423001. doi:10.1088/1361-648X/aadefb.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-2D46-7
Zusammenfassung
We present an efficient methodology to study spin waves in disordered materials. The approach is based on a Heisenberg model and enables calculations of magnon properties in spin systems with disorder of an arbitrary kind and concentration of impurities. Disorder effects are taken into account within two complementary approaches. Magnons in systems with substitutional (uncorrelated) disorder can be efficiently calculated within a single-site coherent potential approximation for the Heisenberg model. From the computation point of view the method is inexpensive and directly applicable to systems like alloys and doped materials. It is shown that it performs exceedingly well across all concentrations and wave vectors. Another way is the direct numerical simulation of large supercells using a configurational average over possible samples. This approach is applicable to systems with an arbitrary kind of disorder. The effective interaction between magnetic moments entering the Heisenberg model can be obtained from first-principles using a self-consistent Green function method within the density functional theory. Thus, our method can be viewed as an ab initio approach and can be used for calculations of magnons in real materials.