English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic configuration controlled photocurrent in van der Waals homostructures

MPS-Authors
/persons/resource/persons268506

Shi,  Li-kun
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

pdf
(Publisher version), 697KB

Citation

Xiong, Y., Shi, L.-k., & Song, J. C. W. (2021). Atomic configuration controlled photocurrent in van der Waals homostructures. 2D Materials, 8(3): 035008. doi:10.1088/2053-1583/abe762.


Cite as: https://hdl.handle.net/21.11116/0000-0008-54CB-5
Abstract
Conventional photocurrents at a p-n junction depend on macroscopic built-in fields and are typically insensitive to the microscopic details of a crystal's atomic configuration. Here we demonstrate how atomic configuration can control photocurrent in van der Waals (vdW) materials. In particular, we find bulk shift photocurrents (SPCs) can display a rich (atomic) configuration dependent phenomenology that range from contrasting SPC currents for different stacking arrangements in a vdW homostructure (e.g. AB vs BA stacking) to a strong light polarization dependence for SPC that align with crystallographic axes. Strikingly, we find that SPC in vdW homostructures can be directed by modest strain, yielding sizeable photocurrent magnitudes under unpolarized light irradiation and manifesting even in the absence of p-n junctions. These demonstrate that SPC are intimately linked to how the Bloch wavefunctions are embedded in real space, and enables a new macroscopic transport probe (photocurrent) of lattice-scale registration in vdW materials.