Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Implantable photonic neural probes for light-sheet fluorescence brain imaging

MPG-Autoren
/persons/resource/persons258003

Sacher,  Wesley D.
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260274

Straguzzi,  John N.
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons258007

Jung,  Youngho
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons257612

Poon,  Joyce K. S.       
Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

025003_1.pdf
(Verlagsversion), 31MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sacher, W. D., Chen, F.-D., Moradi-Chameh, H., Luo, X., Fomenko, A., Shah, P., et al. (2021). Implantable photonic neural probes for light-sheet fluorescence brain imaging. Neurophotonics, 8(2): 025003. doi:10.1117/1.NPh.8.2.025003.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-562C-7
Zusammenfassung
Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for highspeed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes.

Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components.

Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose.

Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses <16 μm for propagation distances up to 300 μm in free space. Imaging areas were as large as ≈240 μm × 490 μm in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy. .

Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals.