Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

A sensory cell diversifies its output by varying Ca2+ influx‐release coupling among active zones


Moser,  T.
Research Group of Synaptic Nanophysiology, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

(Publisher version), 6MB

Supplementary Material (public)
There is no public supplementary material available

Özçete, Ö. D., & Moser, T. (2021). A sensory cell diversifies its output by varying Ca2+ influx‐release coupling among active zones. EMBO Journal, 40(5): e106010. doi:10.15252/embj.2020106010.

Cite as: http://hdl.handle.net/21.11116/0000-0008-5F64-E
The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch‐clamp recordings with dual‐color Rhod‐FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close‐by synapses.