English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sensitivity to New Physics of Isotope Shift Studies using the Coronal Lines of Highly Charged Calcium Ions

MPS-Authors
/persons/resource/persons242420

Rehbehn,  Nils
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons220564

Rosner,  Michael
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons98214

Bekker,  Hendrik
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons250295

Berengut,  Julian C.
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons123093

Micke,  Peter
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30383

Crespo López-Urrutia,  José Ramón
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Fulltext (public)

2102.02309.pdf
(Preprint), 616KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rehbehn, N., Rosner, M., Bekker, H., Berengut, J. C., Schmidt, P. O., King, S. A., et al. (2021). Sensitivity to New Physics of Isotope Shift Studies using the Coronal Lines of Highly Charged Calcium Ions. Physical Review A, 103(4): L040801. doi:10.1103/PhysRevA.103.L040801.


Cite as: http://hdl.handle.net/21.11116/0000-0008-6645-8
Abstract
Promising searches for new physics beyond the current Standard Model (SM) of particle physics are feasible through isotope-shift spectroscopy, which is sensitive to a hypothetical fifth force between the neutrons of the nucleus and the electrons of the shell. Such an interaction would be mediated by a new particle which could in principle be associated with dark matter. In so-called King plots, the mass-scaled frequency shifts of two optical transitions are plotted against each other for a series of isotopes. Subtle deviations from the expected linearity could reveal such a fifth force. Here, we study experimentally and theoretically six transitions in highly charged ions of Ca, an element with five stable isotopes of zero nuclear spin. Some of the transitions are suitable for upcoming high-precision coherent laser spectroscopy and optical clocks. Our results provide a sufficient number of clock transitions for -- in combination with those of singly charged Ca$^+$ -- application of the generalized King plot method. This will allow future high-precision measurements to remove higher-order SM-related nonlinearities and open a new door to yet more sensitive searches for unknown forces and particles.