Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

When vegetation indicates reproduction: the affinity between leaf morphology and flowering commitment in the lily meristem

MPG-Autoren
/persons/resource/persons226312

Garbowicz,  K.
Genetics of Metabolic Traits, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lazare, S., Bechar, D., Garbowicz, K., Fernie, A. R., Brotman, Y., & Zaccai, M. (2021). When vegetation indicates reproduction: the affinity between leaf morphology and flowering commitment in the lily meristem. Physiologia Plantarum, 172(4), 2022-2033. doi:10.1111/ppl.13426.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-673F-F
Zusammenfassung
Abstract At the reproductive stage, lily plants bear two morphological types of mature leaves, one at the lower and one at the upper part of the stem. At the vegetative stage, all the leaves are similar to each other and to the reproductive plant's lower leaves. This heterophylly has not yet been explored. In this study, we show that it is not a result of the plant's age but rather an outcome of floral induction. The induction appears as an on-going process, during which the meristem still produces leaves but progressively becomes committed to reproduction. This intermediate period lasts until the ultimate switch to flower primordia occur. The leaves produced during floral induction, termed here as 'inductive', appear at the upper part of the stem. Besides their typical higher stomata density, these leaves have a poly-layered palisade mesophyll, whose cells exhibit a unique morphology and contain more chlorophyll than leaves of vegetative plants. These leaves display higher carbon assimilation, soluble sugars production and chloroplast-lipid accumulation. Accordingly, genes associated with stomata, chloroplast and photosynthesis are upregulated in these leaves. Our results were obtained when floral induction was achieved either by vernalization or photoperiod signals, ruling out a mere environmental effect. We suggest that lily plants prepares themselves for the high energy-demanding bloom by producing leaves with enhanced photosynthetic capacity, leading to an increase in soluble sugars. These novel findings introduce an adjacent affinity between photosynthesis and flowering and provide a non-destructive tool for identifying the plant's developmental stage ? vegetative or reproductive. This article is protected by copyright. All rights reserved.