Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Next generation cell culture tools featuring micro‐ and nanotopographies for biological screening

MPG-Autoren
/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Carthew, J., Abdelmaksoud, H. H., Cowley, K. J., Hodgson‐Garms, M., Elnathan, R., Spatz, J. P., et al. (2022). Next generation cell culture tools featuring micro‐ and nanotopographies for biological screening. Advanced Functional Materials, 32(3): 2100881, pp. 1-15. doi:10.1002/adfm.202100881.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-6AF0-2
Zusammenfassung
Cells can perceive complex mechanical cues across both the micro‐ and nanoscale which can influence their development. While causative effects between surface topography and cellular function can be demonstrated, the variability in materials used in this screening process makes it difficult to discern whether the observed phenotypic changes are indeed a result of topographical cues alone or the inherent difference in material properties. A novel approach to directly imprint micro‐ and nanoscaled topographical features into the base of conventional cell cultureware is thus developed, facilitating its compatibility with standard biological techniques and methods of analysis. The utility of this technology is demonstrated by performing high‐throughput screening across five distinct cell types to interrogate the effects of 12 surface topographies, exemplifying unique cell‐specific responses to both behavior and cell morphological characteristics. The ability of this technology to underpin new insights into how surface topographies can regulate key image descriptors to drive cell fate determination is further demonstrated. These findings will inform the future development of advanced micro‐ and nanostructured cell culture substrates that can regulate cell behavior and fate determination across the life sciences, including fundamental cell biology, drug screening, and cell therapy.