Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Designing and controlling the properties of transition metal oxide quantum materials


Cavalleri,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Ahn, C., Cavalleri, A., Georges, A., Ismail-Beigi, S., Millis, A. J., & Triscone, J.-M. (2021). Designing and controlling the properties of transition metal oxide quantum materials. Nature Materials, 20(11), 1462- 1468. doi:10.1038/s41563-021-00989-2.

Cite as: https://hdl.handle.net/21.11116/0000-0008-72D5-7
This Perspective addresses the design, creation, characterization and control of synthetic quantum materials with strong electronic correlations. We show how emerging synergies between theoretical/computational approaches and materials design/experimental probes are driving recent advances in the discovery, understanding and control of new electronic behaviour in materials systems with interesting and potentially technologically important properties. The focus here is on transition metal oxides, where electronic correlations lead to a myriad of functional properties including superconductivity, magnetism, Mott transitions, multiferroicity and emergent behaviour at picoscale-designed interfaces. Current opportunities and challenges are also addressed, including possible new discoveries of non-equilibrium phenomena and optical control of correlated quantum phases of transition metal oxides.