English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Interplay between tau and α‐synuclein liquid–liquid phase separation

MPS-Authors
/persons/resource/persons228612

Rankovic,  M.
Research Group of Protein Structure Determination using NMR, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons188032

Strohäker,  T.
Research Group of Protein Structure Determination using NMR, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons14824

Becker,  S.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16093

Zweckstetter,  M.
Research Group of Protein Structure Determination using NMR, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sieger, A., Rankovic, M., Favretto, F., Ukmar‐Godec, T., Strohäker, T., Becker, S., et al. (2021). Interplay between tau and α‐synuclein liquid–liquid phase separation. Protein Science, In Press. doi:10.1002/pro.4025.


Cite as: https://hdl.handle.net/21.11116/0000-0008-74EB-D
Abstract
In Parkinson's disease with dementia, up to 50% of patients develop a high number of tau‐containing neurofibrillary tangles. Tau‐based pathologies may thus act synergistically with the α‐synuclein pathology to confer a worse prognosis. A better understanding of the relationship between the two distinct pathologies is therefore required. Liquid–liquid phase separation (LLPS) of proteins has recently been shown to be important for protein aggregation involved in amyotrophic lateral sclerosis, whereas tau phase separation has been linked to Alzheimer's disease. We therefore investigated the interaction of α‐synuclein with tau and its consequences on tau LLPS. We find α‐synuclein to have a low propensity for both, self‐coacervation and RNA‐mediated LLPS at pH 7.4. However, full‐length but not carboxy‐terminally truncated α‐synuclein efficiently partitions into tau/RNA droplets. We further demonstrate that Cdk2‐phosphorylation promotes the concentration of tau into RNA‐induced droplets, but at the same time decreases the amount of α‐synuclein inside the droplets. NMR spectroscopy reveals that the interaction of the carboxy‐terminal domain of α‐synuclein with the proline‐rich region P2 of tau is required for the recruitment of α‐synuclein into tau droplets. The combined data suggest that the concentration of α‐synuclein into tau‐associated condensates can contribute to synergistic aSyn/tau pathologies.