English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of thermal fluctuations in biological copying mechanisms

MPS-Authors
/persons/resource/persons239268

Das,  Moupriya
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons145742

Kantz,  Holger
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Das, M., & Kantz, H. (2021). Role of thermal fluctuations in biological copying mechanisms. Physical Review E, 103(3): 032110. doi:10.1103/PhysRevE.103.032110.


Cite as: https://hdl.handle.net/21.11116/0000-0008-878B-3
Abstract
During transcription, translation, or self-replication of DNA or RNA, information is transferred to the newly formed species from its predecessor. These processes can be interpreted as (generalized) biological copying mechanism as the new biological entities like DNA, RNA, or proteins are representing the information of their parent bodies uniquely. The accuracy of these copying processes is essential, since errors in the copied code can reduce the functionality of the next generation. Such errors might result from perturbations on these processes. Most important in this context is the temperature of the medium, i.e., thermal noise. Although a reasonable amount of experimental studies have been carried out on this important issue, theoretical understanding is truly sparse. In the present work, we illustrate a model study which is able to focus on the effect of the temperature on the process of biological copying mechanisms, as well as on mutation. We find for our paradigmatic models that, in a quite general scenario, the copying processes are most accurate at an intermediate temperature range; i.e., there exists an optimum temperature where mutation is most unlikely. This allows us to interpret the observations for some biological species with the aid of our model study.