Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Quantification of multiple diffusion metrics from asymmetric balanced SSFP frequency profiles using neural networks

MPG-Autoren
/persons/resource/persons260972

Birk,  F
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons230667

Glang,  F
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216029

Heule,  R
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Birk, F., Glang, F., Birkl, C., Scheffler, K., & Heule, R. (2021). Quantification of multiple diffusion metrics from asymmetric balanced SSFP frequency profiles using neural networks. Poster presented at 2021 ISMRM & SMRT Annual Meeting & Exhibition (ISMRM 2021).


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-8637-3
Zusammenfassung
Asymmetries in the balanced SSFP frequency profile are known to reflect information about intravoxel tissue microenvironment with strong sensitivity to white matter fiber tract orientation. Phase-cycled bSSFP has demonstrated potential for multi-parametric quantification of relaxation times, static and transmit field inhomogeneity, or conductivity, but has not yet been investigated for diffusion quantification. Therefore, a neural network approach is suggested, which learns a model for voxelwise quantification of diffusion metrics from bSSFP profiles. Not only the feasibility for robust predictions of mean diffusivity (MD) and fractional anisotropy (FA) is shown, but also potential to estimate the principal diffusion eigenvector.