English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Deuterium Metabolic Imaging of the human brain at 9.4 T: Coil design and dynamic glucose uptake

MPS-Authors
/persons/resource/persons215122

Ruhm,  L
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215099

Avdievitch,  N
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215132

Ziegs,  T
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ruhm, L., Avdievitch, N., Ziegs, T., Nagel, A., De Feyter, H., de Graaf, R., et al. (2021). Deuterium Metabolic Imaging of the human brain at 9.4 T: Coil design and dynamic glucose uptake. Poster presented at 2021 ISMRM & SMRT Annual Meeting & Exhibition (ISMRM 2021).


Cite as: https://hdl.handle.net/21.11116/0000-0008-8640-8
Abstract
DMI (Deuterium Metabolic Imaging) is a technique that enables the investigation of metabolic turnover rates along predefined pathways non-invasively. In this work, we present first DMI data from the human brain at B0 = 9.4T and an investigation of the dynamic glucose uptake in different areas of the human head for healthy volunteers and after the oral administration of [6,6’-2H]-glucose. We present a dedicated phased array coil design and 2H MRSI data with high spatial resolution for water, glucose, Glx and lipid/lactate. Finally, we compare the uptake curves for different regions in the human head.