English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

DeepCEST: 7T Chemical exchange saturation transfer MRI contrast inferred from 3T data via deep learning with uncertainty quantification

MPS-Authors
/persons/resource/persons230667

Glang,  F
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hunger, L., German, A., Glang, F., Khakzar, K., Dang, N., Mennecke, A., et al. (2021). DeepCEST: 7T Chemical exchange saturation transfer MRI contrast inferred from 3T data via deep learning with uncertainty quantification. Poster presented at 2021 ISMRM & SMRT Annual Meeting & Exhibition (ISMRM 2021).


Cite as: https://hdl.handle.net/21.11116/0000-0008-86DC-9
Abstract
The deepCEST approach enables to perform CEST experiments at a lower magnetic field strength and predict the contrasts of a higher field strength. This is possible through the application of a neural network, which was trained with low and high B1 Z-spectra acquired at 3T as input data, and as target data 5-pool-Lorentzian fitted amplitudes obtained from 7T spectra were used. The network included an uncertainty quantification to verify the reliability of the predicted images.