English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Reduction of 7T CEST scan time and evaluation by L1-regularised linear projections

MPS-Authors
/persons/resource/persons230667

Glang,  F
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fabian, M., Glang, F., Khakzar, K., Mennecke, A., German, A., Schmidt, M., et al. (2021). Reduction of 7T CEST scan time and evaluation by L1-regularised linear projections. Poster presented at 2021 ISMRM & SMRT Annual Meeting & Exhibition (ISMRM 2021).


Cite as: https://hdl.handle.net/21.11116/0000-0008-86E9-A
Abstract
Measurement and evaluation of multi-parametric CEST protocols requires complex and time consuming processing for correction of field inhomogeneities and contrast generation. In this work, we expand the linear projection approach for mapping motion corrected 7T CEST data directly to Lorentzian target parameters by L1-regularisation. This translates to subsampling in the frequency offset domain, resulting in reduced acquisition time. The method generalizes from healthy subject training data to unseen healthy test data and a tumor patient dataset. The L1-regularized linear projection approach integrates shortcutting of B0 and B1 correction, denoising, and Lorentzian fitting. It enforces sparsity of required frequency offsets.