Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Topolectric circuits: Theory and construction


Dong,  Junkai
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;


Roy,  Bitan
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 8MB

Supplementary Material (public)
There is no public supplementary material available

Dong, J., Juricic, V., & Roy, B. (2021). Topolectric circuits: Theory and construction. Physical Review Research, 3(2): 023056. doi:10.1103/PhysRevResearch.3.023056.

Cite as: https://hdl.handle.net/21.11116/0000-0008-8D6D-0
We highlight a general theory to engineer arbitrary Hermitian tight-binding lattice models in electrical LC circuits, where the lattice sites are replaced by the electrical nodes, connected to its neighbors and to the ground by capacitors and inductors. In particular, by supplementing each node with n subnodes, where the phases of the current and voltage are the n distinct roots of unity, one can in principle realize arbitrary hopping amplitude between the sites or nodes via the shift capacitor coupling between them. This general principle is then implemented to construct a plethora of topological models in electrical circuits, topolectric circuits, where the robust zero-energy topological boundary modes manifest through a large boundary impedance, when the circuit is tuned to the resonance frequency. The simplicity of our circuit constructions is based on the fact that the existence of the boundary modes relies only on the Clifford algebra of the corresponding Hermitian matrices entering the Hamiltonian and not on their particular representation. This in turn enables us to implement a wide class of topological models through rather simple topolectric circuits with nodes consisting of only two subnodes. We anchor these outcomes from the numerical computation of the on-resonance impedance in circuit realizations of first-order (m = 1), such as Chern and quantum spin Hall insulators, and second- (m = 2) and third- (m = 3) order topological insulators in different dimensions, featuring sharp localization on boundaries of codimensionality d(c) = m. Finally, we subscribe to the stacked topolectric circuit construction to engineer three-dimensional Weyl, nodal-loop, quadrupolar Dirac, and Weyl semimetals, respectively, displaying surface- and hinge-localized impedance.