Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Forschungspapier

Attentional modulation of intrinsic timescales in visual cortex and spatial networks

MPG-Autoren
/persons/resource/persons215938

Zeraati,  R
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons173580

Levina,  A
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

(Kein Zugriff möglich)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zeraati, R., Shi, Y.-L., Steinmetz, N., Gieselmann, M., Thiele, A., Moore, T., et al. (submitted). Attentional modulation of intrinsic timescales in visual cortex and spatial networks.


Zusammenfassung
Neural activity fluctuates endogenously on timescales varying across the neocortex. The variation in these intrinsic timescales relates to the functional specialization of cortical areas and their involvement in the temporal integration of information. Yet, it is unknown whether the timescales can adjust rapidly and selectively to the demands of a cognitive task. We measured intrinsic timescales of local spiking activity within columns of area V4 while monkeys performed spatial attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales—fast and slow—and the slow timescale increased when monkeys attended to the receptive fields location. A recurrent network model shows that multiple timescales in local dynamics arise from spatial connectivity mimicking vertical and horizontal interactions in visual cortex and that slow timescales increase with the efficacy of recurrent interactions. Our results reveal that targeted neural populations integrate information over variable timescales following the demands of a cognitive task and propose an underlying network mechanism.