日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Temperature-Dependent Electronic Ground-State Charge Transfer in van der Waals Heterostructures

MPS-Authors

Wang,  H.
Fritz Haber Institute of the Max Planck Society;
Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL);

Zacharias,  M.
Fritz Haber Institute of the Max Planck Society;
Department of Mechanical and Materials Science Engineering, Cyprus University of Technology;

/persons/resource/persons203280

Maksimov,  D.
Fritz Haber Institute of the Max Planck Society;
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21421

Rossi,  M.
Fritz Haber Institute of the Max Planck Society;
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

adma.202008677.pdf
(出版社版), 4MB

付随資料 (公開)
引用

Park, S., Wang, H., Schultz, T., Shin, D., Ovsyannikov, R., Zacharias, M., Maksimov, D., Meissner, M., Hasegawa, Y., Yamaguchi, T., Kera, S., Aljarb, A., Hakami, M., Li, L.-J., Tung, V., Amsalem, P., Rossi, M., & Koch, N. (2021). Temperature-Dependent Electronic Ground-State Charge Transfer in van der Waals Heterostructures. Advanced Materials, 33(29):. doi:10.1002/adma.202008677.


引用: https://hdl.handle.net/21.11116/0000-0008-954B-C
要旨
Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of state distribution of the components governs the amount of charge transfer, but a notable dependence on temperature is not yet considered, particularly for weakly interacting systems. Here, it is experimentally observed that the amount of ground-state charge transfer in a van der Waals heterostructure formed by monolayer MoS2 sandwiched between graphite and a molecular electron acceptor layer increases by a factor of 3 when going from 7 K to room temperature. State-of-the-art electronic structure calculations of the full heterostructure that accounts for nuclear thermal fluctuations reveal intracomponent electron–phonon coupling and intercomponent electronic coupling as the key factors determining the amount of charge transfer. This conclusion is rationalized by a model applicable to multicomponent van der Waals heterostructures.