Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Galaxy mass profiles from strong lensing - III. The two-dimensional broken power-law model

MPG-Autoren
/persons/resource/persons261272

O´Riordan,  C. M.
Cosmology, MPI for Astrophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

O´Riordan, C. M., Warren, S. J., & Mortlock, D. J. (2020). Galaxy mass profiles from strong lensing - III. The two-dimensional broken power-law model. Monthly Notices of the Royal Astronomical Society, 501(3), 3687-3694. doi:10.1093/mnras/staa3747.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-9633-5
Zusammenfassung
When modelling strong gravitational lenses, i.e. where there are multiple images of the same source, the most widely used parametrization for the mass profile in the lens galaxy is the singular power-law model ρ(r)∝r−γ. This model may be insufficiently flexible for very accurate work, for example, measuring the Hubble constant based on time delays between multiple images. Here, we derive the lensing properties – deflection angle, shear, and magnification – of a more adaptable model where the projected mass surface density is parametrized as a continuous two-dimensional broken power law (2DBPL). This elliptical 2DBPL model is characterized by power-law slopes t1 and t2 either side of the break radius θB. The key to the 2DBPL model is the derivation of the lensing properties of the truncated power-law (TPL) model, where the surface density is a power law out to the truncation radius θT and zero beyond. This TPL model is also useful by itself. We create mock observations of lensing by a TPL profile where the images form outside the truncation radius, so there is no mass in the annulus covered by the images. We then show that the slope of the profile interior to the images may be accurately recovered for lenses of moderate ellipticity. This demonstrates that the widely held notion that lensing measures the slope of the mass profile in the annulus of the images, and is insensitive to the mass distribution at radii interior to the images, is incorrect.