English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Single and double charge transfer in the Ne2+ + He collision within time-dependent density-functional theory

MPS-Authors
/persons/resource/persons222317

Sato,  S.
Center for Computational Sciences, University of Tsukuba;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

External Resource
Fulltext (public)

PhysRevA.103.032816.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Yu, W., Gao, C.-Z., Sato, S., Castro, A., Rubio, A., & Wei, B. (2021). Single and double charge transfer in the Ne2+ + He collision within time-dependent density-functional theory. Physical Review A, 103(3): 032816. doi:10.1103/PhysRevA.103.032816.


Cite as: http://hdl.handle.net/21.11116/0000-0008-9A4F-3
Abstract
We calculate the charge-transfer cross sections for the Ne2++ He collision. To this end, we employ Ehrenfest molecular dynamics with time-dependent density-functional theory. The active electrons of the projectile are handled by applying an initial velocity to the Kohn-Sham orbitals via a Galilean boost. The dynamical calculations are performed in an inverse collision framework—the reference frame considers Ne2+ to be initially at rest, which ensures numerically converged final-time scattering states. The charge-transfer probabilities are extracted by extending the particle number projection technique to be able to handle the degenerate Ne2+ ion. Compared with experimental data available at 10–3000 keV, a fairly good agreement is found for the calculated single- and double-charge transfer cross sections, superior to other theoretical calculations for this Ne2++ He collision. A time-resolved analysis of the charge-transfer probabilities finds that ionization to the continuum also takes place after the charge transfer has occurred. To account for it, the final scattering states should be followed for a long time, approximately 350 fs, until they stabilize.