English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chemically induced local lattice distortions versus structural phase transformations in compositionally complex alloys

MPS-Authors
/persons/resource/persons213500

Ikeda,  Yuji
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Institute of Materials Science, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125232

Körmann,  Fritz
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Ikeda, Y., Gubaev, K., Neugebauer, J., Grabowski, B., & Körmann, F. (2021). Chemically induced local lattice distortions versus structural phase transformations in compositionally complex alloys. npj Computational Materials, 7(1): 34. doi:10.1038/s41524-021-00502-y.


Cite as: http://hdl.handle.net/21.11116/0000-0008-9D08-F
Abstract
Recent experiments show that the chemical composition of body-centered cubic (bcc) refractory high entropy alloys (HEAs) can be tuned to enable transformation-induced plasticity (TRIP), which significantly improves the ductility of these alloys. This calls for an accurate and efficient method to map the structural stability as a function of composition. A key challenge for atomistic simulations is to separate the structural transformation between the bcc and the ω phases from the intrinsic local lattice distortions in such chemically disordered alloys. To solve this issue, we develop a method that utilizes a symmetry analysis to detect differences in the crystal structures. Utilizing this method in combination with ab initio calculations, we demonstrate that local lattice distortions largely affect the phase stability of Ti–Zr–Hf–Ta and Ti–Zr–Nb–Hf–Ta HEAs. If relaxation effects are properly taken into account, the predicted compositions near the bcc–hcp energetic equilibrium are close to the experimental compositions, for which good strength and ductility due to the TRIP effect are observed. © 2021, The Author(s).