English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Light-Driven Extremely Nonlinear Bulk Photogalvanic Currents

MPS-Authors
/persons/resource/persons261477

Neufeld,  O.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons194586

Tancogne-Dejean,  N.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons221949

de Giovannini,  U.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
IKERBASQUE, Basque Foundation for Science;
Nano-Bio Spectroscopy Group, Universidad del País Vasco UPV/EHU;

/persons/resource/persons221951

Hübener,  H.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Nano-Bio Spectroscopy Group, Universidad del País Vasco UPV/EHU;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

PhysRevLett.127.126601.pdf
(Publisher version), 564KB

Supplementary Material (public)

SI_new.pdf
(Supplementary material), 2MB

Citation

Neufeld, O., Tancogne-Dejean, N., de Giovannini, U., Hübener, H., & Rubio, A. (2021). Light-Driven Extremely Nonlinear Bulk Photogalvanic Currents. Physical Review Letters, 127(12): 126601. doi:10.1103/PhysRevLett.127.126601.


Cite as: https://hdl.handle.net/21.11116/0000-0008-9E03-3
Abstract
We predict the generation of bulk photocurrents in materials driven by bichromatic fields that are circularly polarized and corotating. The nonlinear photocurrents have a fully controllable directionality and amplitude without requiring carrier-envelope-phase stabilization or few-cycle pulses, and can be generated with photon energies much smaller than the band gap (reducing heating in the photoconversion process). We demonstrate with ab initio calculations that the photocurrent generation mechanism is universal and arises in gaped materials (Si, diamond, MgO, hBN), in semimetals (graphene), and in two- and three-dimensional systems. Photocurrents are shown to rely on sub-laser-cycle asymmetries in the nonlinear response that build-up coherently from cycle to cycle as the conduction band is populated. Importantly, the photocurrents are always transverse to the major axis of the co-circular lasers regardless of the material’s structure and orientation (analogously to a Hall current), which we find originates from a generalized time-reversal symmetry in the driven system. At high laser powers (∼1013  W/cm2) this symmetry can be spontaneously broken by vast electronic excitations, which is accompanied by an onset of carrier-envelope-phase sensitivity and ultrafast many-body effects. Our results are directly applicable for efficient light-driven control of electronics, and for enhancing sub-band-gap bulk photogalvanic effects.