English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 PreviousNext  

Released

Conference Paper

Basic Phenotypes of Endocytic System Recognized by Independent Phenotypes Analysis of a High-throughput Genomic Screen.

MPS-Authors
/cone/persons/resource/persons219488

Nikitina,  Kseniia
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/cone/persons/resource/persons231969

Segeletz,  Sandra
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/cone/persons/resource/persons219354

Kuhn,  Michael
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/cone/persons/resource/persons219285

Kalaidzidis,  Yannis
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/cone/persons/resource/persons219807

Zerial,  Marino
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nikitina, K., Segeletz, S., Kuhn, M., Kalaidzidis, Y., & Zerial, M. (2019). Basic Phenotypes of Endocytic System Recognized by Independent Phenotypes Analysis of a High-throughput Genomic Screen. In Proceedings of the 2019 3rd International Conference on Computational Biology and Bioinformatics (pp. 69-75). New York: ACM.


Cite as: https://hdl.handle.net/21.11116/0000-0008-A37A-7
Abstract
High-content screens (HCS) using chemical and genomic interference based on light microscopy and quantitative image analysis yielded a large amount of multi-parametric (MP) phenotypic data. Such data-sets hold great promise for the understanding of cellular mechanisms by systems biology. However, extracting functional information from data-sets, such as links between cellular processes and the functions of unknown genes, remains challenging. The limitation of HCS analysis lies in the complexity of cellular organization. Here, we assumed that cellular processes have a modular structure, and deconvolved the MP data into separate signals from different cellular modules by Blind Source Separation. We applied a combination of quantitative MP image analysis (QMPIA) and Independent Component Analysis (ICA) to an image-based HCS of endocytosis, the process whereby cells uptake molecules from the outside and distribute them to different sub-cellular organelles. We named our approach Independent Phenotypes Analysis (IPA). Phenotypic traits revealed by IPA are interpretable in terms of perturbation of specific endosomal populations (e.g. specific cargo, specific molecular markers) and of specific functional modules (early stages of endocytosis, recycling, cell cycle, etc.). The profile of perturbation of each gene in such basic phenotypic coordinates intrinsically suggest its possible mode of action.