English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Paleo-ENSO influence on African environments and early modern humans

MPS-Authors
/persons/resource/persons213852

Scerri,  Eleanor M. L.
Archaeology, Max Planck Institute for the Science of Human History, Max Planck Society;
Lise Meitner Pan-African Evolution Research Group, Max Planck Institute for the Science of Human History, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kaboth-Bahr, S., Gosling, W. D., Vogelsang, R., Bahr, A., Scerri, E. M. L., Asrat, A., et al. (2021). Paleo-ENSO influence on African environments and early modern humans. Proceedings of the National Academy of Sciences of the United States of America, 118(23): e2018277118, pp. 1-6. doi:10.1073/pnas.2018277118.


Cite as: https://hdl.handle.net/21.11116/0000-0008-B5F1-B
Abstract
Our results identify the prime driver of climate variation in Africa’s low latitudes over the past 620 ky—the key time frame for the evolution of our species. Warming and cooling of the tropical Pacific Ocean paced by insolation changes modulated the tropical Walker circulation, driving opposing wet–dry states in eastern and western Africa. We show that the effects of glacial/interglacial cycles were not the predominant source of environmental change in most of the continent. Africa’s environmental patchwork driven by low-latitude climate processes should therefore be a critical component in conceptual models of human evolution and early demography over the past 620 ky.In this study, we synthesize terrestrial and marine proxy records, spanning the past 620 ky, to decipher pan-African climate variability and its drivers and potential linkages to hominin evolution. We find a tight correlation between moisture availability across Africa to El Niño Southern Ocean oscillation (ENSO) variability, a manifestation of the Walker Circulation, that was most likely driven by changes in Earth’s eccentricity. Our results demonstrate that low-latitude insolation was a prominent driver of pan-African climate change during the Middle to Late Pleistocene. We argue that these low-latitude climate processes governed the dispersion and evolution of vegetation as well as mammals in eastern and western Africa by increasing resource-rich and stable ecotonal settings thought to have been important to early modern humans.All study data are included in the article and/or supporting information.