Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Direct detection of odd-frequency superconductivity via time- and angle-resolved photoelectron fluctuation spectroscopy

MPG-Autoren
/persons/resource/persons252343

Schlawin,  F.
Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science (CFEL);
The Hamburg Centre for Ultrafast Imaging;

/persons/resource/persons182604

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science (CFEL);

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevResearch.3.L042034.pdf
(Verlagsversion), 737KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kornich, V., Schlawin, F., Sentef, M. A., & Trauzettel, B. (2021). Direct detection of odd-frequency superconductivity via time- and angle-resolved photoelectron fluctuation spectroscopy. Physical Review Research, 3: L042034. doi:10.1103/PhysRevResearch.3.L042034.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-BA6E-C
Zusammenfassung
We propose a measurement scheme to directly detect odd-frequency superconductivity via time- and angle-resolved photoelectron fluctuation spectroscopy. The scheme includes two consecutive nonoverlapping probe pulses applied to a superconducting sample. The photoemitted electrons are collected in a momentum-resolved fashion. Correlations between signals with opposite momenta are analyzed. Remarkably, these correlations are directly proportional to the absolute square of the time-ordered anomalous Green's function of the superconductor. This setup allows for the direct detection of the “hidden order parameter” of odd-frequency pairing. We illustrate this general scheme by analyzing the signal for the prototypical case of a two-band superconductor.