English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Arginine-rhamnosylation as new strategy to activate translation elongation factor P

MPS-Authors
/persons/resource/persons254480

Lassak,  Jürgen
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons78199

Keilhauer,  Eva C.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons254854

Wuichet,  Kristin
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254300

Gödeke,  Julia
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254723

Sogaard-Andersen,  Lotte
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lassak, J., Keilhauer, E. C., Fürst, M., Wuichet, K., Gödeke, J., Starosta, A. L., et al. (2015). Arginine-rhamnosylation as new strategy to activate translation elongation factor P. NATURE CHEMICAL BIOLOGY, 11(4), 266-270. doi:10.1038/NCHEMBIO.1751.


Cite as: https://hdl.handle.net/21.11116/0000-0008-C0C7-E
Abstract
Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-beta-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-L-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-L-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development.