English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Observation of the critical state to multiple-type Dirac semimetal phases in KMgBi

MPS-Authors
/persons/resource/persons247116

Le,  C. C.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons195511

Kumar,  N.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  C.
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Liu_Observation.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, D. F., Wei, L. Y., Le, C. C., Wang, H. Y., Zhang, X., Kumar, N., et al. (2021). Observation of the critical state to multiple-type Dirac semimetal phases in KMgBi. Journal of Applied Physics, 129(23): 235109, pp. 1-7. doi:10.1063/5.0045466.


Cite as: https://hdl.handle.net/21.11116/0000-0008-E992-C
Abstract
Dirac semimetals are classified into different phases based on the types of Dirac fermions. Tuning the transition among different types of Dirac fermions in one system remains a challenge. Recently, KMgBi was predicted to be located at a critical state in which various types of Dirac fermions can be induced owing to the existence of a flatband. Here, we carried out systematic studies on the electronic structure of KMgBi single crystals by combining angle-resolve photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. The flatband was clearly observed near the Fermi level. We also revealed a small bandgap of ∼20 meV between the flatband and the conduction band. These results demonstrate the critical states of KMgBi that transition among various types of Dirac fermions can be tuned in one system. © 2021 Author(s).