Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells

MPG-Autoren
/persons/resource/persons232747

Jahnke,  Kevin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons252292

Fichtler,  Julius
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons262958

Nitschke,  Anna
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons243718

Dreher,  Yannik
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons251037

Abele,  Tobias
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons84351

Platzman,  Ilia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jahnke, K., Ritzmann, N., Fichtler, J., Nitschke, A., Dreher, Y., Abele, T., et al. (2021). Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells. Nature Communications, 12: 3967 (2021), pp. 1-9. doi:10.1038/s41467-021-24103-x.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-C548-9
Zusammenfassung
Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness living systems. Here, we realize a strategic merger of both approaches to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. When DNA origami plates are modified with the pH-sensitive triplex motif, the proton-pumping E. coli can trigger their attachment to giant unilamellar lipid vesicles (GUVs) upon illumination. A DNA cortex is formed upon DNA origami polymerization, which sculpts and deforms the GUVs. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells.