English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An optical illusion pinpoints an essential circuit node for global motion processing

MPS-Authors
/persons/resource/persons245660

Wu,  Yunmin
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons130024

Dal Maschio,  Marco
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons130026

Kubo,  Fumi
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39224

Baier,  Herwig
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wu, Y., Dal Maschio, M., Kubo, F., & Baier, H. (2020). An optical illusion pinpoints an essential circuit node for global motion processing. Neuron, 108(4), 722-734.e5. doi:10.1016/j.neuron.2020.08.027.


Cite as: https://hdl.handle.net/21.11116/0000-0008-C891-2
Abstract
Direction-selective (DS) neurons compute the direction of motion in a visual scene. Brain-wide imaging in larval zebrafish has revealed hundreds of DS neurons scattered throughout the brain. However, the exact population that causally drives motion-dependent behaviors-e.g., compensatory eye and body movements-remains largely unknown. To identify the behaviorally relevant population of DS neurons, here we employ the motion aftereffect (MAE), which causes the well-known "waterfall illusion." Together with region-specific optogenetic manipulations and cellular-resolution functional imaging, we found that MAE-responsive neurons represent merely a fraction of the entire population of DS cells in larval zebrafish. They are spatially clustered in a nucleus in the ventral lateral pretectal area and are necessary and sufficient to steer the entire cycle of optokinetic eye movements. Thus, our illusion-based behavioral paradigm, combined with optical imaging and optogenetics, identified key circuit elements of global motion processing in the vertebrate brain.