English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery

MPS-Authors
/persons/resource/persons198566

Sedaghatmehr,  M.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons202685

Thirumalaikumar,  V. P.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons250989

Schulz,  K.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97307

Mueller-Roeber,  B.
Transcription Factors and Gene Regulatory Networks, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97369

Sampathkumar,  A.
Plant Cell Biology and Microscopy, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97060

Balazadeh,  S.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sedaghatmehr, M., Thirumalaikumar, V. P., Kamranfar, I., Schulz, K., Mueller-Roeber, B., Sampathkumar, A., et al. (2021). Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery. Journal of Experimental Botany, 72(21), 7498-7513. doi:10.1093/jxb/erab304.


Cite as: https://hdl.handle.net/21.11116/0000-0008-CC20-E
Abstract
Moderate and temporary heat stresses (HS) prime plants to tolerate, and survive, a subsequent severe HS. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and create a HS memory. We recently demonstrated that plastid-localized small heat shock protein HSP21 is a key component of HS memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the HS recovery phase extends HS memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during HS recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both, metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with HS memory. ATI1 bodies colocalize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during HS recovery. Together, our results provide new insights into the control module for the regulation of HS memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the HS effect at the cost of reducing the HS memory.