English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments

MPS-Authors
/persons/resource/persons241485

Bullerjahn,  Jakob Tómas       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bullerjahn, J. T., & Hummer, G. (2021). Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments. The Journal of Chemical Physics, 154(23): 234105. doi:10.1063/5.0038174.


Cite as: https://hdl.handle.net/21.11116/0000-0008-D988-A
Abstract
Single-molecule localization microscopy allows practitioners to locate and track labeled molecules in biological systems. When extracting diffusion coefficients from the resulting trajectories, it is common practice to perform a linear fit on mean-squared-displacement curves. However, this strategy is suboptimal and prone to errors. Recently, it was shown that the increments between the observed positions provide a good estimate for the diffusion coefficient, and their statistics are well-suited for likelihood-based analysis methods. Here, we revisit the problem of extracting diffusion coefficients from single-particle tracking experiments subject to static noise and dynamic motion blur using the principle of maximum likelihood. Taking advantage of an efficient real-space formulation, we extend the model to mixtures of subpopulations differing in their diffusion coefficients, which we estimate with the help of the expectation-maximization algorithm. This formulation naturally leads to a probabilistic assignment of trajectories to subpopulations. We employ the theory to analyze experimental tracking data that cannot be explained with a single diffusion coefficient. We test how well a dataset conforms to the assumptions of a diffusion model and determine the optimal number of subpopulations with the help of a quality factor of known analytical distribution. To facilitate use by practitioners, we provide a fast open-source implementation of the theory for the efficient analysis of multiple trajectories in arbitrary dimensions simultaneously.