Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pre-merger localization of compact-binary mergers with third generation observatories

MPG-Autoren
/persons/resource/persons214778

Nitz,  Alexander H.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2106.15259.pdf
(Preprint), 863KB

Nitz_2021_ApJL_917_L27.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nitz, A. H., & Canton, T. D. (2021). Pre-merger localization of compact-binary mergers with third generation observatories. The Astrophysical Journal Letters, 917 (2): L27. doi:10.3847/2041-8213/ac1a75.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-DF0B-2
Zusammenfassung
We present the prospects for the pre-merger detection and localization of
binary neutron star mergers with third generation gravitational-wave
observatories. We consider a wide variety of gravitational-wave networks which
may be operating in the 2030's and beyond; these networks include up to two
Cosmic Explorer sites, the Einstein Telescope, and continued observation with
the existing second generation ground-based detectors. For a fiducial merger
rate of 300 Gpc$^{-3}$yr$^{-1}$, we find that the Einstein Telescope on its own
is able to detect 6 (2) sources per year 5 (30) minutes before merger and
provide a localization of $<10~\textrm{deg}^2$. A single Cosmic Explorer would
detect but be unable to localize sources on its own. A two-detector Cosmic
Explorer network, however, would detect 22 (0.4) mergers per year using the
same criteria. A full three-detector network with the operation of dual Cosmic
Explorers and the Einstein Telescope would allow for $<1~\textrm{deg}^2$ source
localization at 5 minutes before merger for $\sim7$ sources per year. Given the
dramatic increase in localization and detection capabilities, third generation
observatories will enable the regular observation of the prompt emission of
mergers by a broad array of observatories including gamma-ray, x-ray, and
optical telescopes. Moreover, sub-degree localizations minutes before merger,
combined with narrow-field-of-view high-energy telescopes, could strongly
constrain the high-energy pre-merger emission models proposed in the last
decade.