Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Water conduction through the hydrophobic channel of a carbon nanotube

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Hummer, G., Rasaiah, J. C., & Noworyta, J. P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(6860), 188-190. doi:10.1038/35102535.

Cite as: http://hdl.handle.net/21.11116/0000-0008-E869-D
Confinement of matter on the nanometre scale can induce phase transitions not seen in bulk systems. In the case of water, so-called drying transitions occur on this scale as a result of strong hydrogen-bonding between water molecules, which can cause the liquid to recede from nonpolar surfaces to form a vapour layer separating the bulk phase from the surface. Here we report molecular dynamics simulations showing spontaneous and continuous filling of a nonpolar carbon nanotube with a one-dimensionally ordered chain of water molecules. Although the molecules forming the chain are in chemical and thermal equilibrium with the surrounding bath, we observe pulse-like transmission of water through the nanotube. These transmission bursts result from the tight hydrogen-bonding network inside the tube, which ensures that density fluctuations in the surrounding bath lead to concerted and rapid motion along the tube axis. We also find that a minute reduction in the attraction between the tube wall and water dramatically affects pore hydration, leading to sharp, two-state transitions between empty and filled states on a nanosecond timescale. These observations suggest that carbon nanotubes, with their rigid nonpolar structures, might be exploited as unique molecular channels for water and protons, with the channel occupancy and conductivity tunable by changes in the local channel polarity and solvent conditions.