English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reactivation of a developmentally silenced embryonic globin gene

MPS-Authors
/persons/resource/persons252091

Oudelaar,  A. M.
Lise Meitner Group Genome Organization and Regulation, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

3332409.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

King, A. J., Songdej, D., Downes, D. J., Beagrie, R. A., Liu, S., Buckley, M., et al. (2021). Reactivation of a developmentally silenced embryonic globin gene. Nature Communications, 12: 4439. doi:10.1038/s41467-021-24402-3.


Cite as: https://hdl.handle.net/21.11116/0000-0008-EAA7-4
Abstract
The α- and β-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.