English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Targeted chemical modifications identify key features of carbohydrate assemblies and generate tailored carbohydrate materials

MPS-Authors
/persons/resource/persons231359

Gim,  Soeun
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons238414

Fittolani,  Giulio
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons217545

Yu,  Yang
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons238081

Zhu,  Yuntao
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121849

Seeberger,  Peter H.
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons187996

Delbianco,  Martina
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gim, S., Fittolani, G., Yu, Y., Zhu, Y., Seeberger, P. H., Ogawa, Y., et al. (2021). Targeted chemical modifications identify key features of carbohydrate assemblies and generate tailored carbohydrate materials. Chemistry – A European Journal, 27(52), 13139-13143. doi:10.1002/chem.202102164.


Cite as: https://hdl.handle.net/21.11116/0000-0008-EE35-1
Abstract
The molecular level description of carbohydrate assemblies is hampered by their structural complexity and the lack of suitable analytical methods. Here, we employed systematic chemical modifications to identify key non-covalent interactions that triggered the supramolecular assembly of a disaccharide model. While some modifications disrupted the supramolecular organization, others were tolerated, delivering important information on the aggregation process. The screening identified new geometries, including nanotubes, and twisted ribbons that were characterized with electron tomography and electron diffraction (ED) methods. This work demonstrates that the combination of synthetic chemistry and ED-methods is a powerful tool to draw correlations between the molecular structure and the nanoscale architecture of carbohydrate assemblies.