Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Selective actuation and tomographic imaging of swarming magnetite nanoparticles

MPG-Autoren
/persons/resource/persons203555

Bente,  Klaas
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons221418

Bachmann,  Felix
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121274

Faivre,  Damien
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bente, K., Bakenecker, A. C., von Gladiss, A., Bachmann, F., Cēbers, A., Buzug, T. M., et al. (2021). Selective actuation and tomographic imaging of swarming magnetite nanoparticles. ACS Applied Nano Materials, 4(7), 6752-6759. doi:10.1021/acsanm.1c00768.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-EE2A-E
Zusammenfassung
Micro- and nanomotors have seen substantial progress in recent years for biomedical applications. However, three grand challenges remain: (i) high velocities to overcome the blood flow, (ii) spatially selective control to enable complex navigation, and (iii) integration of a medical, tomographic real-time imaging method to acquire feedback information. Here, we report the combination of active magnetic matter and a medical imaging technique, namely magnetic particle imaging (MPI), which addresses these needs. We synthesize ~200 nm magnetic nanoparticles and observe a macroscopic, collective effect in a homogeneous magnetic field with a rotating field vector. The nanoparticles form a millimeter-sized cloud and reach speeds of 8 mm s–1. This cloud is imaged and selectively steered with an MPI scanner. Our experimental results are supported by a model that highlights the role of the Mason number, the particle’s volume fraction, and the height of the cloud. The successful introduction of a fast swarm of microscopic units and the spatial selectivity of the technique suggest an effective approach to translate the use of micro- and nanobots into a clinical application.