English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Methanogenesis involves direct hydride transfer from H2 to an organic substrate

MPS-Authors
/persons/resource/persons263982

Huang,  Gangfeng
Department-Independent Research Group Microbial Protein Structure, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Ermler,  Ulrich
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons254714

Shima,  Seigo
Department-Independent Research Group Microbial Protein Structure, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Huang, G., Wagner, T., Ermler, U., & Shima, S. (2020). Methanogenesis involves direct hydride transfer from H2 to an organic substrate. Nature Reviews Chemistry, 4(2), 213-221. doi:10.1038/s41570-020-0167-2.


Cite as: https://hdl.handle.net/21.11116/0000-0008-F2DC-F
Abstract
Certain anaerobic microorganisms evolved a mechanism to use H2 as a reductant in their energy metabolisms. For these purposes, the microorganisms developed H2-activating enzymes, which are aspirational catalysts in a sustainable hydrogen economy. In the case of the hydrogenotrophic pathway performed by methanogenic archaea, 8e are extracted from 4H2 and used as reducing equivalents to convert CO2 into CH4. Under standard cultivation conditions, these archaea express [NiFe]-hydrogenases, which are Ni-dependent and Fe-dependent enzymes and heterolytically cleave H2 into 2H+ and 2e, the latter being supplied into the central metabolism. Under Ni-limiting conditions, F420-reducing [NiFe]-hydrogenases are downregulated and their functions are predominantly taken over by an upregulated [Fe]-hydrogenase. Unique in biology, this Fe-dependent hydrogenase cleaves H2 and directly transfers H to an imidazolium-containing substrate. [Fe]-hydrogenase activates H2 at an Fe cofactor ligated by two CO molecules, an acyl group, a pyridinol N atom and a cysteine thiolate as the central constituent. This Fe centre has inspired chemists to not only design synthetic mimics to catalytically cleave H2 in solution but also for incorporation into apo-[Fe]-hydrogenase to give semi-synthetic proteins. This Perspective describes the enzymes involved in hydrogenotrophic methanogenesis, with a focus on those performing the reduction steps. Of these, we describe [Fe]-hydrogenases in detail and cover recent progress in their synthetic modelling