English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor

MPS-Authors
/persons/resource/persons263982

Huang,  Gangfeng
Department-Independent Research Group Microbial Protein Structure, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254714

Shima,  Seigo
Department-Independent Research Group Microbial Protein Structure, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pan, H.-J., Huang, G., Wodrich, M. D., Tirani, F. F., Ataka, K., Shima, S., et al. (2019). A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. NATURE CHEMISTRY, 11(7), 669-675. doi:10.1038/s41557-019-0266-1.


Cite as: https://hdl.handle.net/21.11116/0000-0008-F2E2-7
Abstract
Nature carefully selects specific metal ions for incorporation into the enzymes that catalyse the chemical reactions necessary for life. Hydrogenases, enzymes that activate molecular H-2, exclusively utilize Ni and Fe in [NiFe]-, [FeFe]- and [Fe]-hydrogeanses. However, other transition metals are known to activate or catalyse the production of hydrogen in synthetic systems. Here, we report the development of a biomimetic model complex of [Fe]-hydrogenase that incorporates a Mn, as opposed to a Fe, metal centre. This Mn complex is able to heterolytically cleave H-2 as well as catalyse hydrogenation reactions. The incorporation of the model into an apoenzyme of [Fe]-hydrogenase results in a [Mn]-hydrogenase with an enhanced occupancy-normalized activity over an analogous semi-synthetic [Fe]-hydrogenase. These findings demonstrate a non-native metal hydrogenase that shows catalytic functionality and that hydrogenases based on a manganese active site are viable.