Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Topology Protects Chiral Edge Currents in Stochastic Systems

MPG-Autoren
/persons/resource/persons227781

Tang,  Evelyn
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons245729

Agudo-Canalejo,  Jaime       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tang, E., Agudo-Canalejo, J., & Golestanian, R. (2021). Topology Protects Chiral Edge Currents in Stochastic Systems. Physical Review X, 11: 031015. doi:10.1103/PhysRevX.11.031015.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-F895-8
Zusammenfassung
Constructing systems that exhibit timescales much longer than those of the underlying components, as well as emergent dynamical and collective behavior, is a key goal in fields such as synthetic biology and materials self-assembly. Inspiration often comes from living systems, in which robust global behavior prevails despite the stochasticity of the underlying processes. Here, we present two-dimensional stochastic networks that consist of minimal motifs representing out-of-equilibrium cycles at the molecular scale and support chiral edge currents in configuration space. These currents arise in the topological phase because of the bulk-boundary correspondence and dominate the system dynamics in the steady state, further proving robust to defects or blockages. We demonstrate the topological properties of these networks and their uniquely non-Hermitian features such as exceptional points and vorticity, while characterizing the edge-state localization. As these emergent edge currents are associated with macroscopic timescales and length scales, simply tuning a small number of parameters enables varied dynamical phenomena, including a global clock, dynamical growth and shrinkage, and synchronization. Our construction provides a novel topological formalism for stochastic systems and fresh insights into non-Hermitian physics, paving the way for the prediction of robust dynamical states in new classical and quantum platforms.